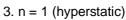
Let specify which value of "n" (the static indeterminacy degree) is the correct one for the following structure :

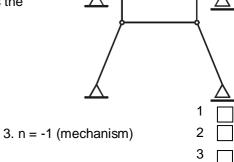
1. n = 0 (statically determined) 2. n = -1 (mechanism)



No. 2

Let specify which value of "n" (the static indeterminacy degree) is the correct one for the following structure :

2. n = 0 (statically determined)



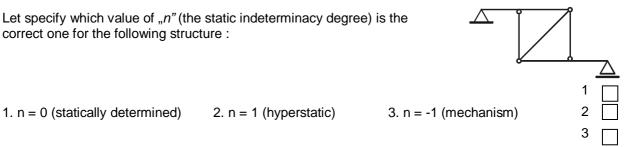
No. 3

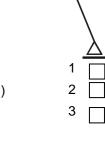
1. n = 1 (hyperstatic)

Let specify which value of "n" (the static indeterminacy degree) is the correct one for the following structure : 1. n = 0 (statically determined) 2. n = 1 (hyperstatic) 3. n = -2 (mechanism) 2 3

No. 4

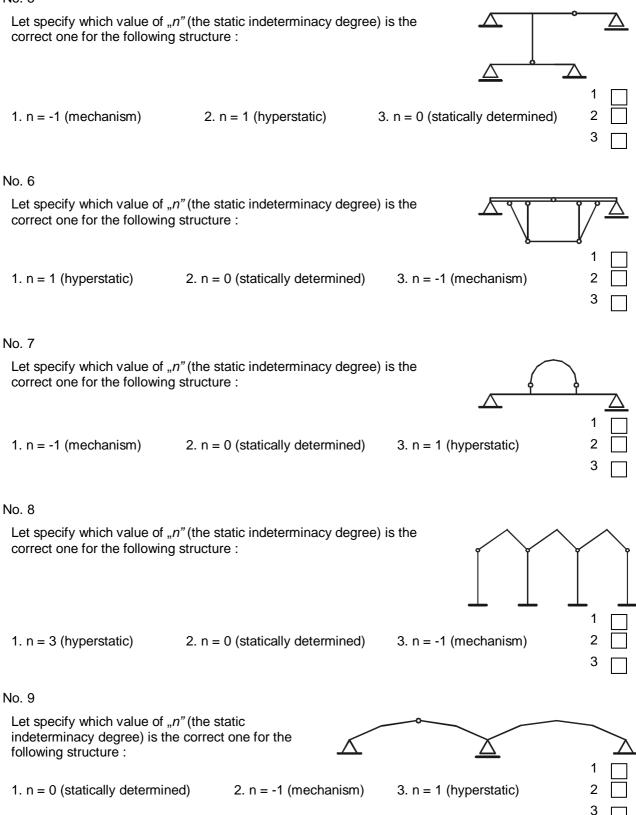
1. n = 0 (statically determined)

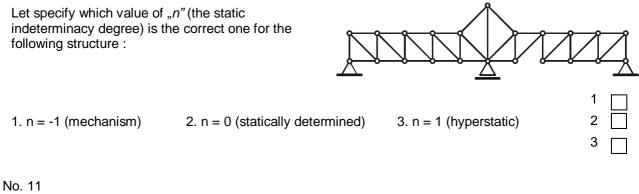




2

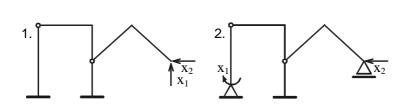
3

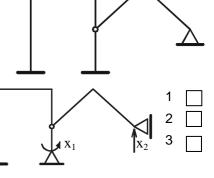




3.

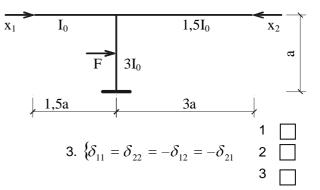
Let specify which is the correct primary determinate structure for the following system, to be solved by applying the force method:





No. 12

Indicate which is the correct relationship set between the unknown coefficients (in force method) for the shown primary determinate structure:

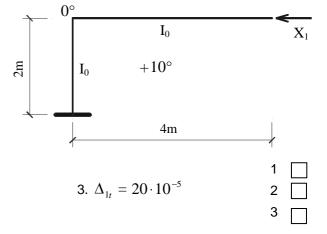


No. 13

For the shown primary determinate structure let specify the correct value of the free term Δ_{lt} , if:

$$\alpha_t = 10^{-5} \circ C^{-1}$$
$$I_0 = \frac{40x100^3}{12}, cm^4$$

1.
$$\Delta_{1t} = -20 \cdot 10^{-5}$$
 2. $\Delta_{1t} = 0$



If in the following system of elastic equations,

(1)
$$\delta_{11} \cdot X_1 + \delta_{12} \cdot X_2 + \delta_{13} \cdot X_3 + \Delta_{1p} = 0$$

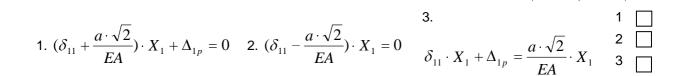
(2) $\delta_{21} \cdot X_1 + \delta_{22} \cdot X_2 + \delta_{23} \cdot X_3 + \Delta_{2p} = 0$
(3) $\delta_{31} \cdot X_1 + \delta_{32} \cdot X_2 + \delta_{33} \cdot X_3 + \Delta_{3p} = 0$

the unknowns coefficients of equations (1) and (2) check the verification relationships, but those from the third equation didn't match, then:

1. the coefficient δ_{31} is wrong 2. the coefficient δ_{32} is wrong 3. the coefficient δ_{33} is wrong 2

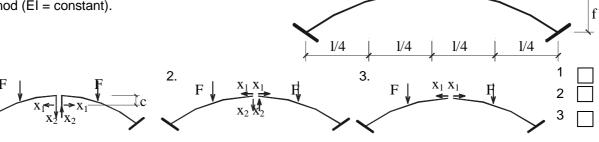
No. 15

For the primary system, let specify which is the correct relationship of the elastic equilibrium equation (EA = constant):



No. 16

For the following arch, let specify which primary system is the most efficient to be used in force method (EI = constant).



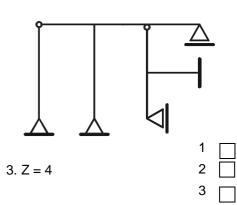
F

No. 17

1.

Let specify the correct value of the kinematic-elastic degree of indeterminacy $_{\pi}Z$ " for the following structure (neglecting the axial beam deformations):

2. Z = 6

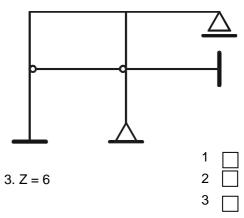


1

3

Let specify the correct value of the kinematic-elastic degree of indeterminacy "Z" for the following structure (neglecting the axial beam deformations):

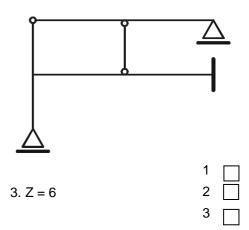
1. Z = 4



No.19

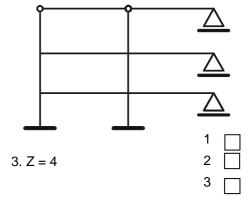
Let specify the correct value of the kinematic-elastic degree of indeterminacy "Z" for the following structure (neglecting the axial beam deformations):

1. Z = 4	2. Z = 5
1. Z = 4	2. Z = 5



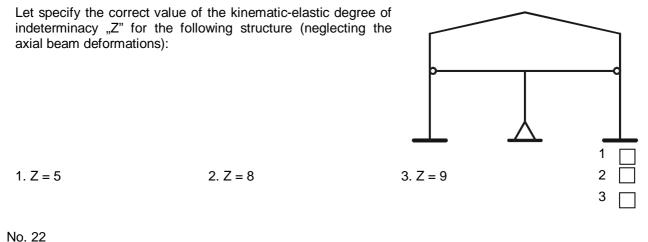
No. 20

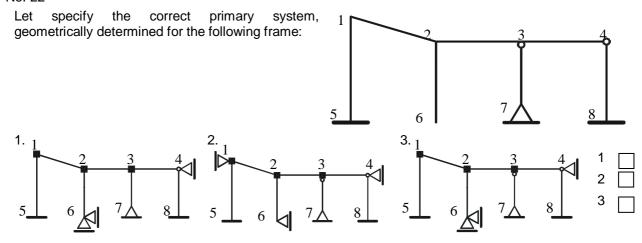
Let specify the correct value of the kinematic-elastic degree of indeterminacy "Z" for the following structure (neglecting the axial beam deformations):



1. Z = 9

2. Z = 7





No. 23

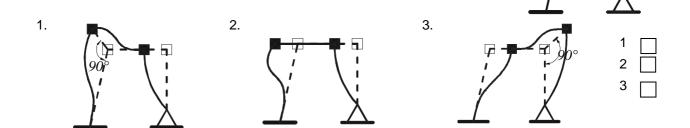
How many meanings could have a coefficient $_{s}$, "from the equations system of the stiffness method, the analytical form, with joint elastic displacements as unknowns:

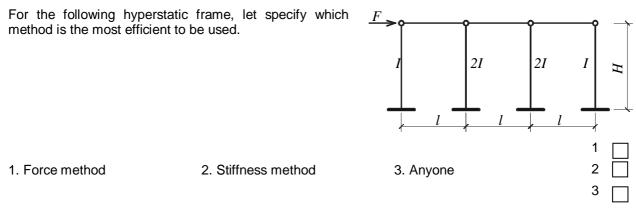
1 2 3

1 2 meanings	2 3 meanings	3 4 meanings
--------------	--------------	--------------

No. 24

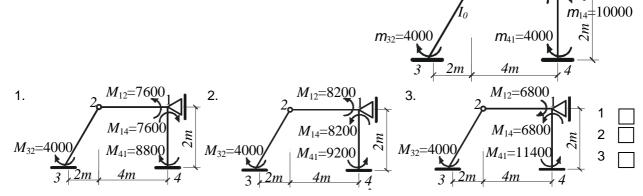
Let specify the correct deformed shape of the indicated elastic degree of a freedom (a):





No.26

For the fully fixed end bending moments m_{ij} let specify which are the correct bending moments after the distribution and spreading process (Cross equilibrium);



 $m_{12}=4000$

 $4I_0$

 $2I_0$

l

No. 27

For the following fully fixed ends beam with a constant cross sectional area (moment of inertia - $2I_0$), the reduced stiffness matrix in local coordinates is:

$$1 \cdot \begin{bmatrix} k \end{bmatrix}_{ij} = \frac{4 \cdot E \cdot I_0}{l} \cdot \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \quad 2 \cdot \begin{bmatrix} k \end{bmatrix}_{ij} = \frac{4 \cdot E \cdot I_0}{l} \cdot \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad 3 \cdot \begin{bmatrix} k \end{bmatrix}_{ij} = \frac{4 \cdot E \cdot I_0}{l} \cdot \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \quad 3 \quad \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$$

Let specify which is the correct expression of the joint displacement transformation matrix in deformations of the beam ends for the following frame:

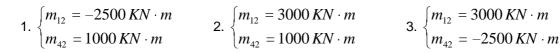
 $EI_0=10^5 KNm^2$

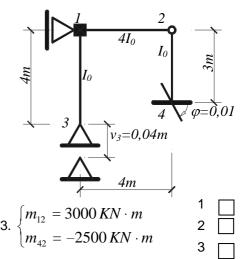


No. 29

Let specify which are the correct fully fixed end bending moments m_{ij} for the indicated settlements (beam oriented bending moments):

 $EI_0=10^5KNm^2$





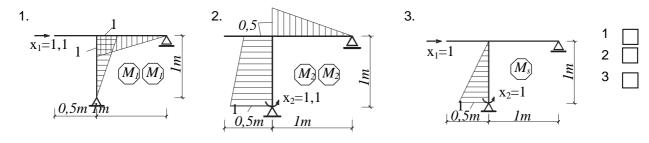
(I)

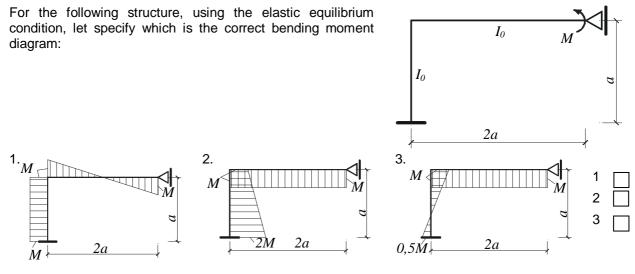
(III)

(II)

No.30

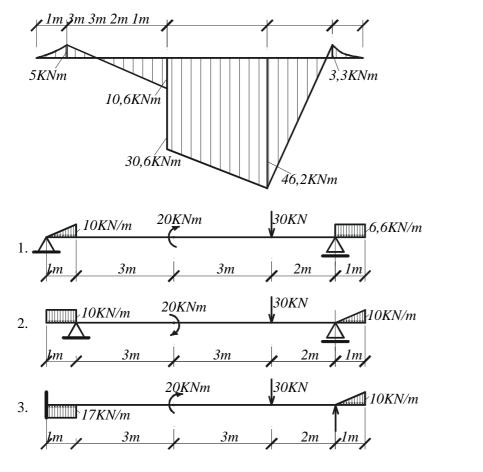
Let specify the wrong bending moment diagram - M₁, M₂ or M_{s.}



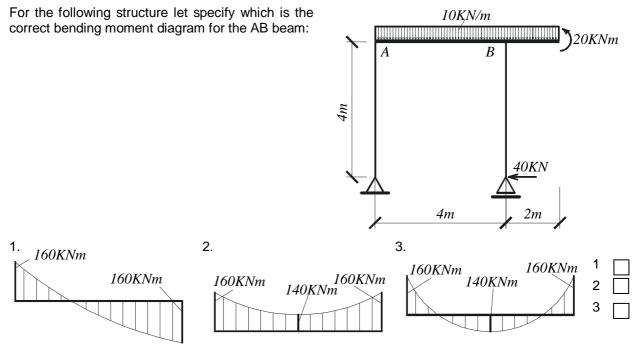


No.32

Let specify which beam corresponds to the following bending moment diagram:

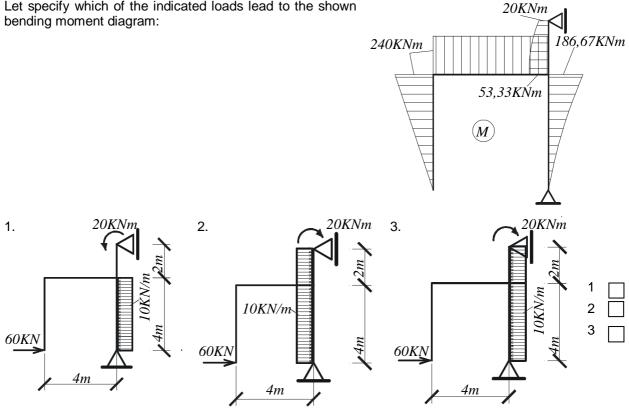


1 _____ 2 ____ 3 ____

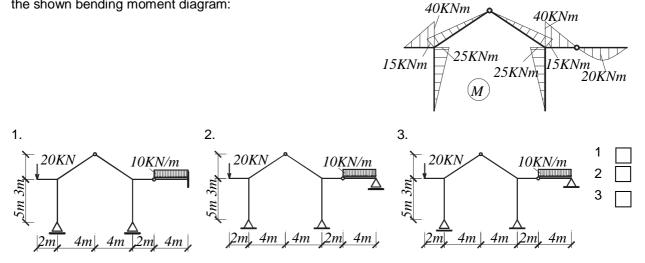


No.34

Let specify which of the indicated loads lead to the shown



Let specify which of the indicated supports correspond to the shown bending moment diagram:



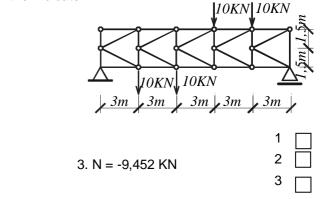
No.36

Let specify which is the correct axial force value for the indicate beam of the following truss:

		45°, 6m , 6m , 6m , 6m	$ \begin{array}{c} 4m \\ 4m \\ 1m \\ 3m \\ 6m \end{array} $
1. N = -1,06 KN	2. N = 2,31 KN	3. N = 1,06 KN	1 2 3

No.37

Let specify which is the correct axial force value for the indicate beam of the following truss:



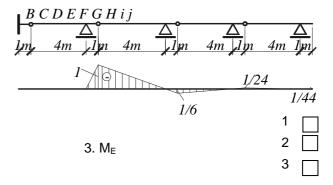
P=10KN

Ļ

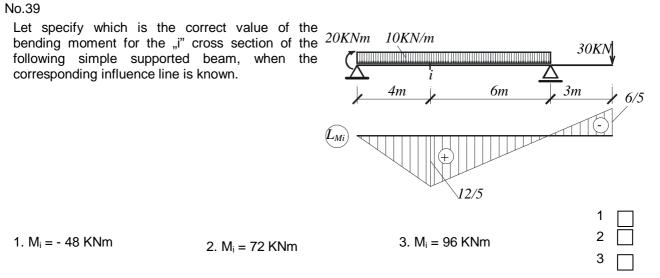
2. N = -11,186 KN

Let specify for which internal effort corresponds to the following influence line:

2. M_C

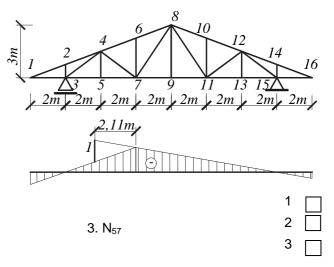


1. V_C



No.40

Let specify for which axial effort of the following truss system the influence line has been drawn.



1. N₄₆

2. N₆₇

Knowing the shear force influence line at "i" cross section, let specify which loads combination lead to a shear force value of $Q_i=25$ KN.

