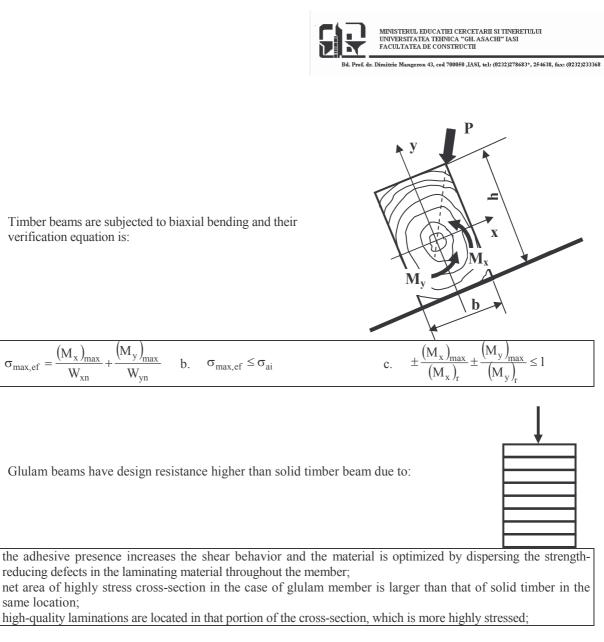


MINISTERUL EDUCATIEI CERCETARII SI TINERETULUI UNIVERSITATEA TEHNICA "GH. ASACHI" IASI FACULTATEA DE CONSTRUCTII

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 , IASI, tel: (0232)278683*, 254638, fax: (0232)233368

TIMBER CONSTRUCTION

1.	Design of timber elements is done	e ac	cording to Romanian Code NP00	5-96	using the following method:
a.	allowable strength design method (ASDM)	b.	limit states design method (LSDM)	c.	both methods
2.	According to limit states design n "m _{iT} " represents:	netł	od of timber member with simple	e cro	ss-section, for "i" yield stress
a.	coefficient of side stability	b.	coefficient of working conditions	c.	treatment coefficient
3.	Design resistance of a timber bea	m s	ubjected to "i" stress represents:		
a.	The maximum stress which is taken by beam	b.	The stress of the specific cross-section having the maximum load	c.	The stress of the cross-section situated on middle of the beam length
4.	The design resistance (LSDM) of subjected to bending is evaluated to				P


a. $M_r = R_i^c W_n m_{Ti}$	b. $M_r = \sigma_{max,ef} W_n$	d. $M_r = \tau_{max,ef} \frac{bI}{S}$

5.		area is evaluated using the bearing coefficient, m _r , e following values:		Bearing area	
a.	m _r < 1,0	b. $1,0 \le m_r \le 2,0$	С.	$m_{r} = 0$	

6. The final maximum deflection of bending elements is evaluated with:

a.	$f_{max,ef} \leq f_{adm}$	b.	$f_{max,final} = f_1 + f_2 + f_3 - f_c$	c.	$f_{max,ef} = \frac{1}{250}L$	
					where L is the beam span	

7.	The maximum deflections under a biaxial bending is given by the following loads combination:							
a.	dead load + variable + joint deformation - precamber b.	dead load + variable load + precamber	c.	joint deformation				
8.	8. Which of the following elements is subjected to bending:							
a.	rafter and joist b.	purlin and arch	C.	wall plate and post				
9.	Which element is subjected primarily to biaxial bending?							
a.	rafter b. r	ourlin vertical to horizontal plan	C.	purlin vertical to the roof slope				

The following cross-section is representative for plywood web beams. For design resistance are used the following mechanical characteristics of: 12.

the flanges material a.

10.

a.

11.

a.

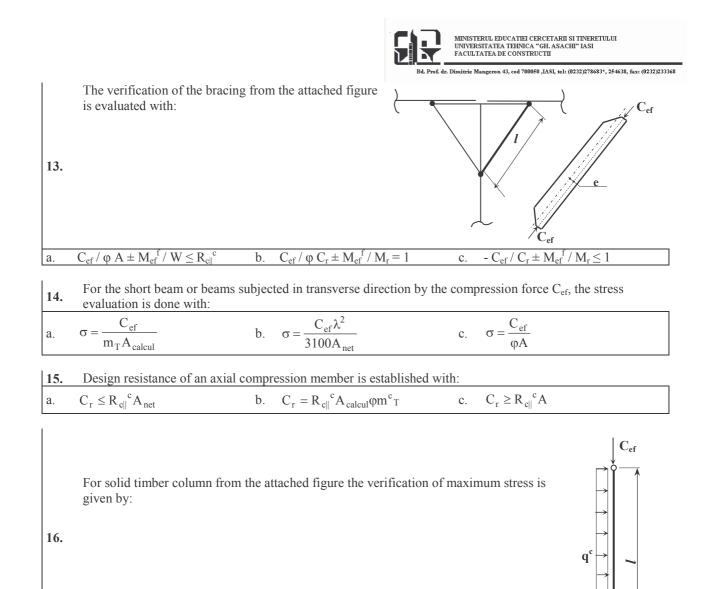
b.

C.

b.

the web material

c.


both

of

types

proportional to their influence

material

a.	- $C_{ef} / C_r \pm M_{ef}^{-f} / M_r \le 1$	b. $-C_{ef}/C_r \pm M_{ef}^{f}/M_r > 1$	c.	$C_{ef} / \phi A_{calcul} \pm M_{ef}^{f} / W_{calcul} \le R_{c\parallel}^{c}$

17.	The equation $\varphi = \frac{3100}{\lambda^2}$) – defin	nes:		
a.	working coefficient	b.	moisture content variation coefficient during construction service	c.	buckling coefficient

MINISTERUL EDUCATIEI CERCETARII SI TINERETULUI UNIVERSITATEA TEHNICA "GH. ASACHI" IASI FACULTATEA DE CONSTRUCTII

Cef Timber elements from the figure are subjected to: 18. biaxial bending compression and bending b. axial compression a c. The strength condition for a round wood column of 3, 0 m length subjected to axial compression force Cef, is 19. given by the equation: $\sigma_{ef} = \frac{C_{ef}}{\lambda^2 A_{best}} \le R_{ef}^{c} \qquad b. \quad \sigma_{ef} = \frac{C_{ef}}{\omega A_{ret} m^{c}_{T}} \le R_{ef}^{c} \qquad c. \quad \sigma_{ef} = \frac{C_{ef}}{A} \le R_{ef}^{c}$ a. A timber column subjected to buckling from compression is working in elastic domain when the slenderness 20. ratio is: $\lambda = 75$ b. $\lambda > 75$ $\lambda < 75$ a c. 21. The effective (buckling) length, l_{f} , of a timber column subjected to axial compression depends on: a. column length b. intensity of compression force c. type of end joints The design resistance of a timber column subjected to eccentric compression force is given by: 22. $C_r = R_{c\parallel}^{\ c} A_{calcul} \phi m^c_T$ b. $C_r = R_{c\parallel}^{\ c} A_{brut} m^c_T$ c. $C_r = R_{c||}^{c} W_{calcul} \phi$ a. For solid timber column subjected to eccentric compression the load capacity is verified with the relation: $\frac{C_{ef}}{\phi C_r} + \frac{M^{f}_{ef}}{M_r} = 1 \qquad b. \quad -\frac{C_{ef}}{C_r} \pm \frac{M^{f}_{ef}}{M} \le 1,0 \qquad c. \quad \frac{C_{ef}}{\phi A_{calcul}} \pm \frac{M^{f}_{ef}}{W_{calcul}} \le R_{e||}^{c}$ 23. a. For a double hinge column, the buckling length is: 24. b. $l_{\rm f} = 1,20 \ l$ $l_{\rm f} = \overline{l}$ a. $l_{\rm f} = 0,65 \ l$ c. In the case of a column subjected to eccentric compression, the strength verification is done taking into 25. $\begin{array}{l} \mbox{account the axial compression only if:} \\ \hline M^{\rm r}_{\rm ef} / \ W_{\rm calcul} = 0,1 \ C_{\rm ef} / \ A_{\rm calcul} \quad b. \quad M^{\rm r}_{\rm ef} / \ W_{\rm calcul} > 10 \ \% \ C_{\rm ef} / \ A_{\rm calcul} \quad c. \quad M^{\rm r}_{\rm ef} / \ W_{\rm brut} \leq 10 \ \% \ C_{\rm ef} / \ A_{\rm brut} \\ \end{array}$ a. For top chord of a timber truss, the buckling length is: $l_f = l$ – the member length between the the constraint and nodes $l_f = 0,56 l$ 26. c. $l_f = 1,5 l$ a. theoretical end nodes For a compound beam, the design resistance is given by $T_{r,i} = R_t^c \cdot A_{net,i} \cdot m_{T,i} \cdot m_R$, where m_R represents: 27.

	coefficient	of	characteristic		distribution coefficient of loads		coefficient	of	technolog	gical
a.	strength	01	characteristic	b.	between wood components of	c.	processes	applied	during	the
	strength				compound beam		element fab	rication		

MINISTERUL EDUCATIEI CERCETARII SI TINERETULUI UNIVERSITATEA TEHNICA "GH. ASACHI" IASI FACULTATEA DE CONSTRUCTII

			Bd. Prof. dr. Dimitrie	Mangeron 43, cod 700050 ,IASI, tel: (0232)278683*, 254638, fax: (0232)2333
28.	Shear verification of timber eleme	ents subjected to compr	ession and bendi	ing is given by:
a.	$L_r = L_{ef}^{f}$ b	$L_r \ge L_{ef}^f$	С.	$L_r \leq L_{ef}^{f}$
29.	Carpentry roof structure is:			
a.	a plane structure covered by metal sh	eet b. a spatial roof	structure c.	a strength structure for buildings
30.	Posts are:			
a.	wood elements to sustain the b	wood elements to su purlins of roof struc		rigidity elements
31.	The wood supports and bracings a	ire.		
a.	woods elements for structure b		ames c.	a beam type from carpentry roof structure
32.	Which type of connection do assu			
a.	Joint with dowel-type fasteners b	Framed joints with of notch in the front ar		Glued timber joint
33.	In the case of framed (carpentry)	oint the yield stress in	connected eleme	ents are:
a.	Bearing and shear stress b	. Shear stress	с.	Bending
34.	When assessing the effective cros screws) is placed:	s-section of multi-dowe	elled joints, the to	otal number of dowels (nails,
a.	all bolts or dowels lie on the total length of lateral wood piece of b joint	all bolts or dowels li rows, but at least on doubled number		
35.	Which is the importance of the po			
a.	Aesthetic role b	To increase the trans	c.	No importance
36.	1 1			
a.	A strength member subjected to b compression	A wood member to wood elements in ro		
37.	8			
a.	Three floors b	. Basement and grour	nd floor c.	Any floors