a.

2.

a.

3.

a.

7.

a.

(1) transversal (shear);

(tension/compression)

(2) longitudinal

 $S_r = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \varepsilon_r \cdot G$

intensity (Mercalli) = 9

 $\{u\}$ is the displacement vector):

magnitude (Richter) = 7.2; b.

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 ,IASI, tel: (0232)278683+, 254638, fax: (0232)233368

Which of the next equations for computing the circular frequency of vibration is correct?

 $\omega = \sqrt{\frac{g}{\delta \cdot G}}$

The main earthquake from March 4th, 1977, from Vrancea, had the next main characteristics:

STRUCTURAL DYNAMICS and EARTHQUAKE ENGINEERING

Conforming to P100 - 92, for a *n* DOF system, the equation for seismic forces computed through the indirect

 $S_r = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \eta_r \cdot G_r$

intensity (Richter) = 6

A multi degree of freedom system loaded by an earthquake characterized by the ground acceleration " $u_g(t)$ " is described by the next equation ([M] is the mass matrix, [K] is the stiffness matrix, [C] is the damping matrix and

magnitude (Mercalli) = 6;

 $S_r = \alpha_r \cdot k_s \cdot \beta_r \cdot \psi \cdot \varepsilon_r \cdot G_r$

magnitude (Richter)

intensity (Mercalli) = 8

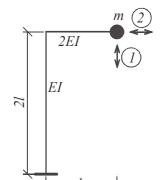
(1) longitudinal

(tension/compression);

(2) transversal (shear)

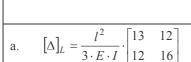
a.	$[M] \cdot \left\{ u(t) \right\} + [C] \cdot \left\{ u(t) \right\} + [K] \cdot \left\{ u(t) \right\} = -[M] \cdot \left\{ u_g(t) \right\}$		
b.	$[M] \cdot \begin{Bmatrix} \bullet \bullet \\ u_g(t) \end{Bmatrix} + [C] \cdot \begin{Bmatrix} \bullet \\ u_g(t) \end{Bmatrix} + [K] \cdot \begin{Bmatrix} u_g(t) \end{Bmatrix} = -[M] \cdot u(t)$		
c.	$[M] \cdot \left\{ u(t) \right\} + [C] \cdot \left\{ \stackrel{\bullet}{u}(t) \right\} + [K] \cdot \left\{ \stackrel{\bullet \bullet}{u}(t) \right\} = -[M] \cdot \stackrel{\bullet \bullet}{u}_{g}(t)$		
5.	• The seismic force, defined as the maximum inertia force, is:		
a.	$S = m \cdot S_a \qquad \qquad b. \qquad S = m \cdot \omega^2 \cdot S_a \qquad \qquad c$		$S = m \cdot \omega \cdot S_a$
6.	Conforming to P100 – 92, the nominal degree of seismic assurance R_{min} for the importance class is:	ne t	buildings belonging to the second
a.	$R_{min} = 0.60$ b. $R_{min} = 0.70$		$R_{min} = 0.50$

(1) parallel (bending);


(2) rotational (torsional)

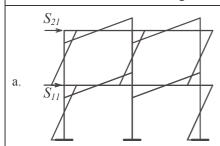
The seismic primary waves (or P - waves) are (1).....waves

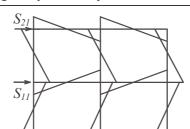
and the secondary waves (or S – waves) are (2)......waves.

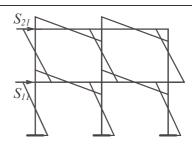

 $([k]_L - \theta^2 \cdot [m]) \cdot \{U_{0i}\} + \{D_{0i}\} = \{0\} \quad \text{b.} \quad ([k]_L - \theta^2 \cdot [m]) \cdot \{U_{0i}\} = \{F_{0i}\}$

 $([k]_L - \omega^2 \cdot [m]) \cdot \{U_{0i}\} = \{F_{0i}\}$

9.


For the system shown by the adjoining figure, the flexibility matrix is:




b.
$$\left[\Delta\right]_L = \frac{l^3}{6 \cdot E \cdot I} \cdot \begin{bmatrix} 13 & 12 \\ 12 & 16 \end{bmatrix}$$

c.
$$[\Delta]_L = \frac{l}{E \cdot I} \cdot \begin{bmatrix} 13 & -12 \\ -12 & 16 \end{bmatrix}$$

10. Which of the next bending moment diagrams produced by seismic action is correct?

Conforming to P100 – 92, for an 1 DOF system, the equation for seismic force is: 11.

b.

a.
$$S = \alpha \cdot k_s \cdot \beta \cdot \psi \cdot G$$

$$\mathbf{b}. \qquad S_r = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot G_r \qquad \qquad \mathbf{c}. \qquad S_i = \alpha_i \cdot k_s \cdot \beta_i \cdot \psi \cdot G_i$$

c.
$$S_i = \alpha_i \cdot k_s \cdot \beta_i \cdot \psi \cdot G_s$$

c.

12.

For the cantilever from the adjoining figure the period of vibration is:

a.
$$T = 2\pi \sqrt{\frac{l^2}{3 \cdot E \cdot I}}$$

b.
$$T = 2\pi \sqrt{\frac{l^3 \cdot m}{3 \cdot E \cdot I}}$$

c.
$$T = 2\pi \sqrt{\frac{l^2 \cdot m \cdot g}{6 \cdot E \cdot I}}$$

Which seismic waves are the most dangerous for civil engineering structures?

- primary waves (longitudinal) a.
- secondary waves (transversal)
- surface waves

Conforming to P100 – 92, the nominal degree of seismic assurance "R" is: 14.

a.
$$R = S_{capable} / S_{maxim}$$

b.
$$R = S_{capable} / S_{neccesary}$$

c.
$$R = S_{neccesary} / S_{capable}$$

The maximum response of a structure to seismic load, obtained by modal superposition is given by $(,R_r)$ is the 15. response for the "r" mode of vibration):

a.
$$R_{\text{max}} = \frac{\sum_{r=1}^{m} R_r}{\sqrt{\sum_{r=1}^{m} R_r^2}}$$

b.
$$R_{\text{max}} = \sqrt{\sum_{r=1}^{m} R_r^2}$$

$$R_{\text{max}} = \frac{1}{\sqrt{\sum_{r=1}^{m} R_r^2}}$$

- The Richter Scale is a (1)......scale, also named (2).....scale: 16.
- (1) objective; a.

(1) objective;

(1) subjective;

- (2) seismic intensity
- (2) magnitude

- For a 1 DOF system described by the equation $u(t) + 2 \cdot \xi \cdot \omega \cdot u(t) + \omega^2 \cdot u(t) = -u_g(t)$, the spectral value of the 17. displacement is defined by:
- $S_d(\xi,\omega) = |u(t)|_{\max}$
- b. $S_{\omega}(\xi, \omega) = \begin{vmatrix} \bullet \bullet \\ u(t) \end{vmatrix}_{\min}$ c. $S_{a}(\xi, \omega) = \begin{vmatrix} u(t) \end{vmatrix}^{2}$
- 18. The tectonic plates are floating on the mantle of the Earth determining:
- a. the continental drift
- b. the Earth internal structure
- the behavior of civil c. engineering structures

Which of the next orthogonality equations is correct?

a.
$$\sum_{i=1}^{n} m_i \cdot U_{ir} \cdot U_{is} = 0, r \neq s$$

b.
$$\sum_{r=1}^{n} m_i \cdot U_{ir} \cdot U_{is} = 0, r \neq s$$

$$\sum_{i=1}^n m_i \cdot U_{ir} \cdot U_{is} = 0 \,, \, r \neq s \qquad \qquad \text{b.} \qquad \sum_{r=1}^n m_i \cdot U_{ir} \cdot U_{is} = 0 \,, \, r \neq s \qquad \qquad \text{c.} \qquad \sum_{i=1}^n m_r \cdot U_{ir} \cdot U_{is} = 0 \,, \, r \neq s$$

A system with cu 1 DOF, u(t), has the mass m, the stiffness k and the damping c. If the external,

unidirectional earthquake action is $u_g(t)$, then the equation of motion for this system under the earthquake 20.

a.
$$m \cdot u(t) + c \cdot u(t) + k \cdot u(t) = -m \cdot u_g(t)$$

b.
$$m \cdot u_g(t) + c \cdot u_g(t) + k \cdot u_g(t) = -m \cdot u \quad (t)$$

c.
$$m \cdot u_g(t) + c \cdot u(t) + k \cdot u(t) = -m \cdot u(t)$$

Conforming to P100 - 92, for a n DOF system, the equation of seismic forces computed through the direct 21. method is:

a.
$$S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \varepsilon_r \cdot G$$

b.
$$S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \eta_{ir} \cdot G_r$$

$$S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \varepsilon_r \cdot G_i \qquad \qquad \text{b.} \qquad S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \eta_{ir} \cdot G_i \qquad \qquad \text{c.} \qquad S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi_i \cdot \eta_{ir} \cdot G_i$$

22. Conforming to P100 - 92, for the "A" seismic intensity zone, the k_s coefficient has the value:

a.
$$k_s = 0.32$$

b.
$$k_s = 0.26$$

c.
$$k_s = 0.20$$

23. Which of the next versions represents the system of equation for obtaining the modes of vibrations for the a n DOF system in undamped free vibrations using stiffness matrix method:

a.
$$([k]_L - \omega_r^2 \cdot [m]) \cdot \{U_{ir}\} = \{0\}$$

$$([k]_L - \omega_r^2 \cdot [m]) \cdot \{U_{ir}\} = \{0\}$$
 b.
$$([k]_L - \theta^2 \cdot [m]) \cdot \{U_{ir}\} = \{0\}$$

c.
$$([\Delta]_L - \omega_r^2 \cdot [m]) \cdot \{U_{0i}\} = \{0\}$$

are? m

24. How many dynamic degrees of freedom has the system from the figure?

- **25.** Which of the next versions represents the system of equation for determining the modes of vibrations for the *n* DOF system in undamped free vibrations using flexibility matrix method?
- a. $(\omega_r \cdot [\Delta]_L \cdot [m] [1]) \cdot \{U_{ir}\} = \{0\}$
- $(\omega_r^2 \cdot [\Delta]_L \cdot [m] [1]) \cdot \{U_{ir}\} = \{0\}$
- c. $([\Delta]_L \cdot [m] \omega_r^2 \cdot [1]) \cdot \{U_{ir}\} = \{0\}$
- **26.** Conforming P100 92, the dynamic coefficient β has the next maximum and minimum values:

$$\beta_{\text{max}} = 2.5$$

$$\beta_{\text{max}} = 2.0$$

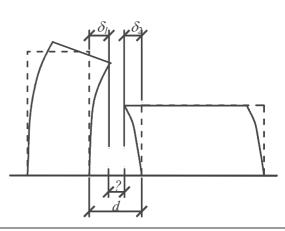
$$\beta_{\text{max}} = 2.3$$

$$\beta_{\min} = 1$$

$$\beta_{\min} = 0.7$$

$$\beta_{\min} = 0.7$$

A particular solution of the equation of motion $u(t) + 2 \cdot \xi \cdot \omega \cdot u(t) + \omega^2 \cdot u(t) = -u_g(t)$ is:


a.
$$u(t) = 2 \cdot \xi \cdot \omega + \frac{1}{\omega^2} \cdot \int_0^t u_g(\tau) \cdot e^{-\xi \cdot \tau} \cdot \sin \frac{1}{\sqrt{1 - \xi^2}} \cdot d \cdot \tau$$

b.
$$u(t) = -\frac{1}{m} \cdot \int_{0}^{t} u_{g}(\tau) \cdot \sin \frac{\omega^{2}}{1 - \xi^{2}} \cdot d \cdot \tau$$

c.
$$u(t) = -\frac{1}{\omega \cdot \sqrt{1 - \xi^2}} \cdot \int_0^t u_g(\tau) \cdot e^{-\xi \cdot \omega \cdot (t - \tau)} \cdot \sin \left[\omega \cdot \sqrt{1 - \xi^2} \cdot (t - \tau) \right] \cdot d \cdot \tau$$

- **28.** A design spectra refers to the maximum probabilistic response of 1 DOF system acted by:
- a. the Vrancea earthquake, from March 4th, 1977
- b. many earthquake records scaled at the same intensity
- c. one earthquake specified by designer

29.

Conforming P100 – 92 the anti-seismic joint is:

a.
$$d \ge \delta_1 + \delta_2 + 20mm$$

b.
$$d \ge \delta_1 + \delta_2 + 20cm$$

c.
$$d \ge \delta_1 + \delta_2 + 10cm$$

a.	The process in which a tectonic p subduction	b.	substitution	c.	substructure
u.	Subduction	0.	Substitution	<u> </u>	Substitutuie
31.	The Rayleigh waves şi Love wave	es are	generated:		
a.	at the Crust surface	b.	in the Mantle	C.	in the Core
32.	Where is the Moho (Mohorovicic		V 1		
a.	between the Mantle and Core	b.	between the Mantle and Crust	C.	under the Crust
33.	Where is an earthquake epicenter	locat	ed?		
a.	at the Crust surface	b.	at the place of earthquake generation	c.	under the Crust
34.	The exogenous earthquakes are go	enera	ted:		
a.	in the Crust	b.	at the Crust surface	c.	in the Mantle
35.	Who have firstly develop the Con	tinen	tal Drift Theory?		
a.	Wegener	b.	Richter	C.	Beethoven
36.	What was the name of the super-o				
a.	Panagaea	b.	Panthalassa	C.	Eurasia
37.	Which are the main tectonic plate	s?			
a.	Nazca, Cocos, Somali, Caribbean, Philippine and	b.	Pacific, Australian-Indian, Antarctic, American, African	c.	Antarctic, American, Somali, Caribbean, Philippine and
	Arabian		and Euroasian		Euroasian
38.	Which are the micro-plates that in	iterse	ct on the Romanian territory?		
a.	Interalpine, Russian, Eurasian, Black See Micro-plate	b.	Arabian, Moesian, Eurasian, Black See Micro-plate	c.	Interalpine, Moesian, Eurasian, Black See Micro-plate
39.	Which is the nature of the most w	eight	ing earthquakes?		
a.	exogenous	b.	endogenous	c.	xenophobes
40.	Which seismic waves are longitude				
a.	Love	b.	Rayleigh	c.	P
41.	How can seismic waves be record	led?			
a.	with micrometers	b.	with seismometers	c.	with accelerometers
42.	Where was firstly done a seismic	recor	d?		
a.	El Centro	b.	Long Beach	c.	Pasadena
43.	Who had firstly conceived a scale	for e	valuation of seismic action?		
a.	Medvedev	b.	Mercalli	C.	Rossi and Forel
		- •			

44.	With the help of which scale can quantitatively be appreciated an earthquake?								
a.	Richter	b.	MM	c.	MSK				
45.			hquake recorded at the surface of the	ne Ear					
a.	P and S	b.	PP	c.	Rayleigh and Love				
1									
46.	3 6								
a.	12	b.	10	c.	9				
٠		1.0							
47.	How is also named the Richter sca		1 1		2.1				
a.	quantitative scale	b.	subjective scale	c.	magnitude scale				
48.	What an accelerogram is?								
2	ground acceleration's variation	b.	ground acceleration's variation	c.	ground displacement's variation				
a.	with time	υ.	with frequency	· · ·	with time				
49.			seismic action is important for the	civil e					
a.	Richter	b.	MSK	c.	MM				
l - 0			1 10						
50.	Where the subduction phenomeno		*						
a.	in the epicentral zone	b.	at the level of oceanic crust	c.	in the rifts' zones				
51.	A Fourier spectrum is a representa	ation	of the relation:						
a.	acceleration – time	b.	oscillation amplitude – frequency	c.	oscillation amplitude – period				
			1 3						
52.	What a spectral value is?								
	maximum acceleration of the		maximum displacement of the		maximum velocity of the				
a.	response of a system with one	b.	response of a system with one	c.	response of a system with one				
	DOF to a given action		DOF to a given action		DOF to a given action				
53.	A seismic response spectrum is th	e ren	resentation of relation						
a.	spectral values – time	b.	spectral values – frequency	c.	spectral values – period				
	-L	··	-r-sam and maney		-r-sami and police				
54.	How the damping of a system affective	ects th	ne response to seismic action?						
a.	by reducing it	b.	by amplifying it	c.	not at all				
55.		-	es at the level of oceanic crust are i	named					
a.	Seiche	b.	Tsunami	c.	Beniof				
1									
56.	Which is the rigid body frequency								
a.	15 Hz	b.	100 Hz	c.	33 Hz				

57. The relation between the seismic response spectra is: a. $S_a = \omega^2 \cdot S_d = \omega \cdot S_v$ b. $S_a = \omega^2 \cdot S_v = \omega \cdot S_d$ c. $S_a = -\omega^2 \cdot S_d = -\omega \cdot S_v$

58. The seismic magnitude is define as:

- the base 10 logarithm of the maximum amplitude, measured in micrometres (10⁻⁶m), of the earthquake result a. obtained by Wood Anderson seismograph with magnification 2800, the natural period T=0.8s, damping coefficient 0.8, and corrected to a distance of 100 km from epicenter
- the natural logarithm of the minimum amplitude, measured in nanometers (10⁻⁹m), of the earthquake result b. obtained by Woody Alen, seismograph with magnification 8200, the natural period T=8.0s, damping coefficient 8.0, and corrected to a distance of 90 km from epicenter
- the natural logarithm of the average amplitude, measured in centimeters (10⁻²m), of the earthquake result obtained c. by Wood Angel seismograph with magnification 28, the natural period T=8.08s, damping coefficient 0.8, and corrected to a distance of 10 m from epicenter

59. What a deterministic spectrum is?

a. design spectrum b. result of processing an in situ recorded action c. result of processing a random action

60. In what range the spectral peaks for actions recorded until now on Earth are found?

a. 0-0.3s

b. 0.3-1.8s

c. 0-2.5s

61. The Fourier spectrum and the seismic spectrum are the same thing.

a. yes

b. no

c. almost the same

62. What is the d'Alambert's Principle useful for?

a. for writing the differential equation of motion

- for writing the fictitious statical b. equilibrium for a dynamical
- c. for obtaining spectra

63. Which are the forces participating to seismic response?

a. damping, elastic and seismic forces

- b. damping, inertia seismic forces
- c. damping, elastic, seismic and inertia forces

64. In a conservative system the damping force is:

a. different from 0

b. equal to 0

c. equal to or different from 0

What is the relation between the kinetic energy (E_c) and potential energy (E_p) during the oscillation of a conservative system?

 \overline{a} . $E_c + E_p = 0$

b. $E_c+E_p=constant$

c. $E_c + E_p > 0$

66. Corresponding to the maximum amplitude of a system being in oscillation, kinetic energy (E_c) and potential energy (E_p) are:

a. $E_{c} - \text{maximum}$ $E_{p} - 0$

b. $\frac{E_c - 0}{E_p - \text{maximum}}$

E. E_c - maximum E_p - maximum

67. Which is the relation between period, frequency and circular frequency for a system with one DOF?

a. $T = \frac{1}{\omega} = \frac{2 \cdot \pi}{f}$

b. $T = \frac{1}{f} = \frac{2 \cdot \pi}{\omega}$

c. $T = (f)^{-1} = \frac{2 \cdot \pi^2}{\omega}$

68. What is a response of the type "time history"?

the response obtained through the a. integration of the differential

- integration of the differential equation of motion
- the response obtained through the help of seismic response spectrum
- the response obtained through modal analysis

69.	Which degrees of freedom of a mactions?	ass a	re usually taken into consideration	on in dim	nensioning structures to seismic
a.	those of horizontal translation	b.	those of rotation	c.	those of horizontal translation, vertical translation and rotation
70.	For common systems with n DOF	used i	in civil engineering the inertia ma	atrix is:	
a.	diagonal	b.	full	C.	main diagonal symmetrical and also secondary diagonal symmetrical
71.	For systems with n DOF the stiffned	ess ma	atrix can be:		
a.	diagonal	b.	tri-diagonal	c.	full and main diagonal symmetrical
72.	For non-conservative systems with	n DC	OF the damping matrix can be:		
a.	0	b.	diagonal	c.	full and main diagonal symmetrical
73.	The spectral matrix is:				
a.	diagonal	b.	full c.		from the square of circular cies placed on main diagonal
74.	The modal matrix is:				
a.	symmetrical	b.	anti-symmetrical	c.	random
75.	The displacement vector correspon	ding	to the fundamental mode of vibra	ation of a	system is formed from terms:
a.	null	b.	with same sign	C.	positives and negatives
76.	Which of the next expressions give	es the	generalized mass?		
a.	$M_i = \{x_k\}_i^T \cdot [\ m_k \] \cdot \{x_k\}_j$	b.	$M_i = \{x_k\}_i \cdot [\ m_k \] \cdot \{x_k\}_i^T$	c.	$M_i = \{x_k\}_j^T \cdot [\ m_k \] \cdot \{x_k\}_j$
77.	Which is the correct form for the s	hape	factor?		
a.	$\eta_{ki} = \mathbf{x}_{ki} \frac{\{\mathbf{x}_k\}_i \cdot [\ \mathbf{m}_{k \setminus}] \cdot \{1\}}{\{\mathbf{x}_k\}_i^{\mathrm{T}} \cdot [\ \mathbf{m}_{k \setminus}] \cdot \{x_k\}_i}$	b.	$\eta_{ki} = x_{ki} \frac{\sum\limits_{i=1}^{n} x_{ki} \cdot m_k}{\sum\limits_{i=1}^{n} x_{ki}^2 \cdot m_k} \qquad c.$	$\eta_{ki} = x$	$^{ki} \frac{\{\mathbf{x}_k\}_i \cdot [\ \mathbf{m}_{k \setminus}] \cdot \{\mathbf{x}_k\}}{\{\mathbf{x}_k\}_i^T \cdot [\ \mathbf{m}_{k \setminus}] \cdot \{\mathbf{x}_k\}_i}$
78.	Applying the calculated seismic fo	rces o	on a system, the analysis is:		
a.	dynamic	b.	static	c.	pseudo-dynamic
79.	"Time history" is an analysis of the	e type	:		
a.	dynamic	b.	static	c.	pseudo-dynamic
80.	Which of the next coefficients make	te the	link with the spectrum?		
a.	Ψ	b.	β_r	c.	k_s

Bd. Prof. dr. Dimitrie Mangeron 43	cod 700050 TAST	+a1. (8232)279693± 254639	6.v. (0232)233368
Dd. Prot. dr. Dimitrie Mangeron 43	, coa /uuusu ,tast	, tet: (0434)476063^, 454036	, rax: (0232)233308

81.	Through which coefficient the structural	capacity	y for diss	sipation the	e energy is	s taken into	account?

a. α

b. Ψ

c. ε_r

82. Which is the correct expression for the equivalence coefficient?

a.
$$\varepsilon_i = \frac{\left(\sum\limits_{k=1}^n m_k \eta_{ki} x_{ki}\right)^2}{\left(\sum\limits_{k=1}^n m_k\right) \left(\sum\limits_{k=1}^n m_k x_{ki}^2\right)}$$

b.
$$\varepsilon_i = \frac{\left(\sum_{k=1}^n m_k x_{ki}\right)^2}{\left(\sum_{k=1}^n m_k\right)\left(\sum_{k=1}^n m_k x_{ki}^2\right)}$$

c.
$$\varepsilon_i = \frac{\sum_{k=1}^n m_k x_{ki}}{\left(\sum_{k=1}^n m_k\right) \left(\sum_{k=1}^n m_k x_{ki}^2\right)}$$

83. Is there any difference between the seismic forces' distribution coefficient and the shape factor?

a. yes

b. n

c. they are the same thing

84. The contribution of the fundamental mode of vibration to the response of a common system with n DOF is:

a. the most important

b. insignificant

c. relative

85. Through what can be appreciated the contribution of a mode of vibration to the total response of a system?

a. shape factor

b. modal participation factor

c. distribution factor

86. Surface earthquakes mostly affects:

a. low-rise and stiff constructions

b. tall flexible constructions

c. all constructions

87. Seismic isolation is realized through:

a. increase of structural ductility

b. introduction of a bearing between foundation and superstructure

introduction of energy dissipating elements into the structure

88. Which is the concept standing at the base of common seismic design norms?

a. Elastic concept

b. ductility concept

c. elastic-ductility concept

89. Through the ductility of a construction element the next is assured:

a. increase of the strength

b. increase of the energy dissipation capacity

c. possibility of plastic hinges formation

90. What are the seismic forces?

a. inertia forces

b. forces from external actions

c. link forces

91. Which are the units the acceleration can be appreciated with?

a. cm/s^2

b. m/s^2

c. mm/s^2

92. The fundamental period of vibration of a system corresponds to:

a. any mode of vibration

the last mode of vibration

c. the first mode of vibration

93. Which are the units that can express the mass?

a. Kg

b. $N/(m/s^2)$

c. daN

94. The gravity acceleration, $g(m/s^2)$ is:

a. 9,81

b. 8,81

c. 10,00

a.	full	b.	diagonal	c.	triangular
a.	Tuii	υ.	diagonai	С.	triangular
96.	The modal matrix is:				
a.	the matrix of the mode shapes of vibration	b.	the circular frequencies matrix	c.	the square of circular frequencies matrix
97.	The floor's relative stiffness is:				
a.	ratio between the share force and the floor's relative displacement	b.	ratio between the share force and the total displacement c.	dis	tio between the total splacement and the floor's lative displacement
98.	The spectral matrix is:				
a.	the matrix of the square of circular frequencies	b.	the matrix of mode shapes	c.	the matrix of the modes of vibration
99.	The epicentral distance is:				
1.	the distance between the focus and the epicenter	b.	the distance between the epicenter and the seismic station	c.	the distance between the focus and the seismic recording station
100.	The fundamental mode of vibration	is the	e assemble between:		