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TEORY OF ELASTICITY AND PLASTICITY

0o ot
X + i +X=0
1.  The system of equations represents:
Ty 0Oy
+——+Y=0
0x
a) the static equilibrium equations for an infinitesimal element detached from a body subjected to a plane
stress state;
b) the dynamic equilibrium equations for an infinitesimal element detached from a body subjected to a plane
stress state;
c) the boundary conditions in plane elasticity;
d) the continuity condition in plane elasticity.
The stress tensor at a point of a deformable loaded is:
Ox Tyx Txx 20 0 4
2. To=|Tyy Oy Ty |=0 10 0 I\Y )
mm
Ty Ty, O 4 0 —-12
What is the tensor element that represents a principal stress?
a.  4N/mm’ b. 10N/ mm’ c. -I2N/mm’ d. 20N/ mm’
px =0y l+T,m
3. The system of equations * * - represents:
Py =Txyl+oym
a) the static equilibrium equations for an infinitesimal element detached from a body subjected to a plane
stress state;
b) the dynamic equilibrium equations for an infinitesimal element detached from a body subjected to a plane
stress state;
c) the boundary conditions in plane elasticity;
d) the continuity condition in plane elasticity the continuity.
. ov ov
4.  The system of equations e =—, &y =—, 7Yy =——+—, represents:
o0x oy dy 0Ox
a) the constitutive law of the material in plane elasticity;
b)  the geometric equations in plane elasticity;
c) the constitutive law of the material in three-dimensional elasticity;
d)  the boundary conditions in plane elasticity.
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The strain tensor at a point of a homogeneous and isotropic body is:
_8 | Y | Y -
X 5 lyx A lTzx
1 2 12 8 3 0
-4
5. T, = nyy €y Eyzy = 107713 -4 0
) 1 0 0 4
_EYXZ EYyZ €y |
A principal direction of deformation at this point coincides to:
direction of axis N . direction of axis bisector of angle
a. b.  direction of axis Oy c. A
Ox Oz xOy
6.  Condition A(o-x +to, ) =0 represents:
a)  astatic equilibrium equation in plane elasticity;
b)  the continuity condition expressed in terms of stresses, in plane elasticity;
c) the continuity condition expressed in terms of stresses, in three-dimensional elasticity;
d)  aboundary condition in plane elasticity.
~ The solution of a plane elasticity problem in terms of stresses, by considering a Cartesian coordinate
. L . . . . . 292 _ )
system, consists in solving the differential equation (notation V-V~ = AA):
4
292 p(x.y) 292 d'w_p(x)
a. V' Viwlx,y)=—"7=— b VV-F(r,9)=0 c. — = d. 2y2 =
(oy)==3 (r,9) PR v2v2 F(x,y)=0
8. The stress function F(x,y) generates the following stresses:
o _0%F . %F . O°F
a =T 5 = ) =< >
o 7o y? ¥ " oxdy
b) OF OF 0%F
Ox=%> COy=—=">5 Txy =~ >
oy ox Ox0y
. _OF . _OF . . __0%F
C) X ayz b} y axz b Xy axay b
2 2 2
F
d) zea_s_x.x’ Gyza—f—Y-y; -ny:_a_’
ox oy 0x0y
For the rectangular two-dimensional element shown in the figure, the stress function is:
y
N
! T Py
L X 7h
9. ‘
N X N h
1 o 1
X2 y2 3
a. F(X):pXT b. F(X,y)=pyxXy; c. F(y)=py TR d. F(y):pxy?
| 10.  The polynomial corresponding to tension along to orthogonal directions is:
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Oy = b, Txy:p

2 3 3 2 2 2
ax ax cy cy ax C
a.  F(x,y)=—+bxy b. F(x,y)=—+— ¢ F(xy) =bxy+—=—— d B9
y)==3 y (oY) ==—+—¢ (%, y) = bxy +=¢ Fooy) ==+
2 3
11. " The polynomial F(x,y) = a% + d% corresponds to:
a eccentric tension in eccentric tension in x combined shear tension along two
’ y axis direction axis direction and bending directions
. ax? Cy3 .
12. The stresses generated by the polynomial F(x, y):7+bxy +T have the expressions:
a. Ox =Cy;, Oy=4a; b. Ox :_bX + ey, Oy=4a; c. Ox :_CYa GOy = Oa Ox = bx + Cy; Oy =4,
Ty = -b Txy = -b Txy = _by Txy =
p p
T -~
]
y 1
The stress function at point “1” of the two- /
13.  dimensional element with unit thickness, shown in § H=L
the figure, is: ///
L2 | LA == 75577
2 2
L 2
a. F=-pL b. F _pL” c. F=-P= d. F1:pL
4 2 8
! p p
e 4
*
v !
The correct values of the stresses o, and 1,y at
14. point “1” of the element presented in the figure f / H=L
are: /
L2 | Lh E7r
A Oy=P, Ty =0 b. C. Oy=-P,Ty=0 d




| . MINISTERUL EDUCATIEI CERCETARI SI TINERETUL UL
| | UNIVERSITATEA TEHNICA "GH. ASACHI" IAST

EE B FACULTATEA DE CONSTRUCTIL
" Bd Prof. dr. Dimitrie Mangeron 43, cod T00050 ,IASI, tel: (023212T2683+, 254638, fax: {0232)233368
Aﬂf
The stress function at point “1” of the two-dimensional 1
element shown in the figure (when the origin is located at
point O) is:
15. H=L
A ol B
|
1 L2 L2
2 2 2 2
a. 1:& b 1:& c Flz_& d Fl__&
12 24 6 24
A
1
What are the values of the stresses o, Gy, Ty, at the central point of the
16. deep beam shown in the figure, when their evaluation is performed by P 2
using the finite differences method, with the presented grid? \I/ \I/ \I/ \I/ \I/
LA A
A
a) _ 1 _ 1 _
Gy = gp, Gy = Ep, Txy =0
1 1
b) Ox=——D, Oy==P, Tyy=0
1 1
c) Gx ==P, Oy =—D, Txy=0
d) Ox =5P> Oy =—D Txy =0
17 Mention the value for the ratio L/H for which a rectangular two-dimensional element, loaded in its middle
surface plane, is considered to be a deep beam:
L L L
a. —=10 b. —<5 c. —>5 d. £>10
H H H H
. . . . . y Vi
For the two-dimensional triangular finite element shown in the }
figure, the displacement field can be expressed as:
18 u(x,y) = Niui + lelj + Nkuk,
) V(X,y) = NiVi + NjVj + Nka
where N;, Nj, Ny are: 1Vj
0 X
a.  stress functions b. axial forces Weighting d.  shape functions

functions
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The stresses produced by the interior pressure p; in a cylinder with
thick walls are:
cr=2A+£; 09=2A—£;
r? r?
19. The constants 2A and B are obtained by using the following

boundary conditions:

(Gr)r=Ri =DPi> (Gr)r=Ri =~Pi (Ge)r=Ri =0 (Gr)r:Ri =—pj

. C.
(Gr)r:Re =0 (Ge)r:Re =DPi (Gr)r:Rc =0 (Gr)r=Rc =0;

20 The stresses at a point of a infinite plate with a circular hole acted
" by a constant radial pressure p are:

) T r
(ce):p[ij (66)=0 (c6)=0
R
0 y
At a point of an elastic half-plane, loaded by
21. a force that acts normal to the surface, as r
presented in the figure, the radial stresses are: 0
W .
2P cosO 2P cosO 3P cos6 3P cos6
a. G, =— . Op=—— c. Op=—— P =——

Tor Tor 2n ot ' C 2 2
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P
0 y

7777 77T

For an elastic half-plane, loaded by a force normal to the boundary, as

22. shown in the figure, the circles tangent to the boundary at the origin are

called:

fx
a. isochromatics b. isoclines c. trajectories of first kind d. isobars
P
O
y
0
Knowing o, = 2P cosb for a
T r

23. half-plane acted by a forc§ normal d r

to the boundary, mention the

values that characterize the isobars:

o;
2P 2P 2P
a. - b. — c. - d. P
Tr Tr nd nd
24 The differential equation of the deformed middle surface in Cartesian coordinates for rectangular plates,
" acted by normal forces to their middle plane, has the shape:

a) o'F _ o%F 64F_0.

axt axley? oyt
b) 64w+2 o*w +64W_p(x,y).

4 242 4 p

ox 0x “ 0y oy

©  d*w 2d’w 1d*w 1dw p()
R S R R T
dr I dr r° dr > dr D

ddtw px).

x4 EI’
25. The internal forces that occur in rectangular plates, loaded by normal forces to their middle plane, are:
a)  the axial forces Ny, Ny ; the shear forces Ty, Ty ;
b)  the axial forces Ny, Ny ; the bending moments M, , My ;
c)  the bending moments M, , M, ; the twisting moment M,, = My, = M; the shear forces Ty, Ty;
d)  the axial forces Ny, N, ; the twisting moment M,, = My,;
26 Some of the stresses that occur in a plate subjected to bending have maximum absolute value on the upper

" surface and the lower surface of the plate. What are these stresses?

a. Ox>Txz>Tyzs b. Oy>Txz>Tyzs C. Ox>0y,Txy = Tyx> d.

Txy> Txz> Tyzs
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Error! Bookmark n
defined.

For the
plates
subjecte
d to
bending
27. ,  the
distribut
ion of
normal
stresses
o, over
the
thicknes
S and
the

carract

What is the distribution of

stresses T, over the plate

thickness?
58, ickness
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2 The boundary conditions for the rectangular plate shown in the figure are: b
oo o
ly
. . _ on sides x = 0; )
on sides x = 0; on sides x = 0; On sides x = 0;
w=0 w=0 w=0 w=0
- - 2 .
x=aqow_o X=asow _ x-a 6W:0’ x=a{o*w _;
x ox ox? PR
a. . b. onsidesy=0; . B d.
onsidesy=0;y on sides y = 0; on sides y = 0;
w=0 W;O w=0 w=0
- =b =
b W _g Y 6—W=0 y=b<a%w Y=b @:0
oy oy’ P I oy
oy
The extreme normal stresses extreme O max for the 120
ma my \
30. rectangular plate shown in the figure are: \L
a
*P m=Pa
h
al2 al2 1
N ii + 3Pa + 9Pa
h? 2h? 1-h?
What is the thickness /4 of the plate presented in the figure
31.  and made of a material characterized by the limit normal
stress o ?
Pa 3Pa 6Pa
a. — b. {— —
G 200 (o))
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V
For the plate loaded as shown in the figure, indicate the E_ /

correct value of the free term p, , resulted from the

=
LN

I EE!

A

I
32. <
transcription into finite differences of equation | _ i
Vzvzw(x,y):w, at point 1.
P p p P
. =p+—=; . :_+P; . =4
a pP1=p 2 b. p; 5 c P 5
X
———— B
9
9
1 0 )
b
‘ P
9
The deflection and bending moments at the central point of =
33 the plate presented in the figure, determined by using the :; a
* finite differences method for the indicated grid, are: 0 —)<§ —
Y | P=pa2
. a , a |
1 1 1
4 at 4
= pa_ Wi = pa_ 5 Wi = ba
o _pat Y17 %p 4D "7 20D
1= 2 2
1
a. 10D b My =-—Vpa, o M, =P VI
l+v 5 5 R (VI
My, = Myl = pa
5 1+v 2 2
yl pa _ba M., = pa
10 yl 10 yl 5
34.  In the axial-symmetric circular and annular plates, the following internal forces occur:
a. MrsMrSZMersTr; b. MSaMrGZMGraTO; C. MrsMS,MrOZMSr d. Mr,Me,Tr;
For a circular solid plate, the solution of equation VZVZW(r)z%, has the form:
35. W=A +B1r2+wp. Mention the boundary conditions corresponding to a plate
simply supported along the whole contour, needed to determine the integration
constants A, and B;:
Forr=R
d 2 2 2
o ow=0; o b weoor IWLYIW o woor Y0 4 woo YV,
dr dr? ot dr dr? T 402
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Indicate the loading case for the circular plate, knowing that the corresponding particular solution is

36. 4
Ll
64D
T r T
a. % b. c. s d. /ﬁ
p ) p 0
FESIRES T
L] L] I T
R R _ R _ R
The deflection expression for the circular plate presented in the figure is R
4
2, pr
w(r)=A+Br +——.
® 64D 4 r E
The maximum deflection is: -
37.
anl )
o
VAR AINAA
R < R
4 2 4 4
a PR b, PR .. PR 4 pR*
24D 32D 16D 64D
38. What is the condition that does not correspond to membrane state for shells?:
a) the shell thickness, constant or slow variable, is small;
b) the shell surface is continuous (without holes or stiffnings etc.);
c) the shell is continuously supported in the tangent plane to the middle surface;
d) the loads (forces or moments) are concentrated and can have any sense.
For axial-symmetric rotation shells, in the membrane theory, the internal force in the meridian direction,
R
39. Ny, at a section defined by the angle ¢ is expressed by using the relation N, =——A_(p , where R, 0 is:
2nrsin @
a)  the radius of curvature;
b)  the reaction along the boundary;
¢) the resultant of the afferent gravitational loads;
d) the resultant of reactions along the boundary.
40. Over the thickness of the shells that work in membrane state, the stresses are:
a.  zero b.  uniform distributed ~ ¢. linear distributed d. Pparabolic

distributed
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The circumferential internal force N; , in axial-symmetric
rotation shells, according to membrane state theory, is

4L obtained from an algebraic equilibrium equation that has the

form: (r,, r, — the principal radii of curvature at a point of the N |

surface) 9

No
)

Ny N Nyo N Ny N N

a. e +—9+pX =0 b. —(P+—e+p2=0 c. _np+_e+py=0 d. _‘P+&+pzzo
| ) | 1Y) S| Y] rnp 1
Rae
y
alo

The resultant Ry, = Ry, of the load given by the own Y

weight (g — the weight per unit surface), at a current = L
42.  gection of the conical dome shown in the figure is: ’\r\ff/

v
?

a.  gemr’ b. g-ml c. g&-my d g 2mry
43.  The components of the load produced by snow on axial-symmetric rotation shells are:

px =0, px =0, px =0, py =0,
a. Py=g-sing, b. Py=0, c. DPy=q-cose-sing, py =0,

Pz =8 COSQ p,=v-Hy pZ=q-cosz(p P, =p-sin@-cosb.

44.

The membrane internal force Ny, at a current section of
the conical dome presented in the figure, is determined
from an algebraic equation that has the form:
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45. The internal force in the supporting ring of the dome shown in
the figure is: ;

The equilibrium equations for open cylindrical shells
that work in membrane state are:

61\]_X+i%+p :O'
x R o9 7
Ny, 10N
—+— +p, =0;

46. x R 0o Py
R P

The internal forces are obtained from this system in
the following order:

ONo
Np+=+ o do
a. Ny, Ny, Ny b. Ny, Nye, Ny c. Ny, Ny, Ng d. N,,N., N,
o N
In the cylindrical shell having one ! |
span and one bay, supported on a 5 !
47, bpediment, the internal force N, '
produced by the own weight has L2 L2 |
the expression: !

a. —2gx -sin @ b. 2gR-cos¢

2J~cosg0 d. —gR-coso
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O X
The internal force N,, produced by the X : H >
weight of snow in a cylindrical roof with | : |
48. one span and one bay, supported on a : ’ :
pediment, is determined by using the L2 | L2 |
relation: ! !
a —aR - cos? b. qR-coso c —qu~sin2qo d LT ﬁ_xz -cos2
) . ¢ ' ' 2 i 2R|( 4 ¢
49. The yielding criterion at a point where the stresses o and t are known, can be expressed as:
1 [ 2 2
a. ©]=0, b. SVo +1° =0, ¢ yo+41? =o, d. o241t =o,
50 The yielding criterion Von Mises for the stress state at a point, expressed by the stresses ¢ and T, has the
" form:
a.

1
Vol+26t% =c, b V02+3172:GC c o’ +1° =o d. 5 c52+4T2:Gc




